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The acceleration of the solar coronal plasma to supersonic speeds is one of the most fundamental yet unresolved
problem in heliophysics. Despite the success of Parker’s pioneering theory on an isothermal solar corona, the realistic
solar wind is observed to be non-isothermal, and the decay of its temperature with radial distance usually can be fitted
to a polytropic model. In this work, we use Parker Solar Probe data from the first nine encounters to estimate the
polytropic index of solar wind protons. We show that the polytropic index varies between 1.25 and 5/3 and depends
strongly on solar wind speed, faster solar wind on average displaying a smaller polytropic index. We comprehensively
analyze the 1D spherically symmetric solar wind model with polytropic index γ ∈ [1,5/3]. We derive a closed algebraic
equation set for transonic stellar flows, i.e. flows that pass the sound point smoothly. We show that an accelerating wind
solution only exists in the parameter space bounded by C0/Cg < 1 and (C0/Cg)

2 > 2(γ − 1) where C0 and Cg are the
surface sound speed and one half of the escape velocity of the star, and no stellar wind exists for γ > 3/2. With realist
solar coronal temperatures, the observed solar wind with γ & 1.25 cannot be explained by the simple polytropic model.
We show that mechanisms such as strong heating in the lower corona that leads to a thick isothermal layer around the
Sun and large-amplitude Alfvén wave pressure are necessary to remove the constraint in γ and accelerate the solar wind
to high speeds.

I. INTRODUCTION

Since the start of the space era, numerous human-made
satellites that entered the interplanetary space have verified the
existence of continuous, supersonic plasma flow, also known
as the solar wind. Decades of satellite observations of the
solar wind have revealed that solar wind interacts with the
Earth’s magnetosphere and injects a large amount of energy
into the magnetosphere, causing various space weather events
such as the magnetic storms and substorms that have great im-
pacts on human society. Thus, understanding the solar wind,
including how it is generated, is one of the most important
topics in the field of space physics.

The first theory of the formation of solar wind was estab-
lished by 1, who showed that with an isothermal and hot solar
corona, the plasma is able to escape the solar gravity and be-
comes supersonic flow whose speed is similar to the in-situ
observations. 2–4 extend the theory to allow either a pre-
defined temperature profile or a temperature that relates to the
density through a static barometric law. In these early solar
wind models, the only energy source is the efficient thermal
conduction from the base of the solar corona. However, as the
solar wind plasma is nearly collisionless, thermal conduction
is only effective for the electron fluid5,6 but not the ions. Thus,
other mechanisms are necessary for the acceleration and heat-
ing of solar wind.

In the solar corona, various processes, e.g. magnetic
reconnection7, may provide a significant amount of energy,
but these processes are important only at very low altitudes
above the solar surface. It is now widely accepted that Alfvén
waves are a promising power source of the solar wind, as
large amplitude Alfvén waves are observed to be quasi omni-
present in the solar wind8. In this scenario, outward propa-

gating Alfvén waves are injected at the base of solar corona
and are partially reflected because of the gradient of Alfvén
speed9. The reflected waves interact nonlinearly with the
outward propagating waves, causing energy cascade from
large to small scales (the turbulence energy cascade)10. The
cascaded energy eventually dissipates through wave-particle
interactions such as ion cyclotron resonance11 and Landau
damping12, hence heats the plasma. In addition, the waves
may directly accelerate the solar wind through the wave pres-
sure gradient13 as the wave amplitude is large, especially
around the Alfvén critical point. Many numerical works have
shown that this Alfvén-wave-driven solar wind model is able
to produce the observed fast solar wind14.

The goal of the current study is to conduct a comprehensive
analysis of the 1D solar wind model with the Alfvén wave
dynamics and heating in the lower corona properly approxi-
mated. We do not adopt a self-consistent Alfvén-wave-driven
solar wind model13–16. Instead, we consider a polytropic solar
wind model where the plasma thermal pressure P and density
ρ obey the polytropic relation Pρ−γ =Const with a polytropic
index γ . Here γ should be no larger than 5/3 (adiabatic case)
and no smaller than 1 (isothermal case). For γ = 1, the plasma
can always gain sufficient heating, e.g. from thermal conduc-
tion, to maintain a constant temperature during its expansion.
For γ = 5/3, there is no heating of the plasma so that the inter-
nal energy must be consumed to support the work done by the
plasma during its expansion, resulting in a cooling solar wind.
A polytropic solar wind with 1< γ < 5/3 is in an intermediate
state with finite heating, thus we can use it to approximate the
heating effect from the Alfvén waves.

Many studies have been conducted to estimate the poly-
tropic index of the solar wind proton. Helios data gives an
average value 1.46 which is independent of the solar wind
speed17. Measurements made at 1 AU confirm the speed-
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independence18 and show that γ is modulated by the solar
activity19. Recent works20,21 using Parker Solar Probe (PSP)
measurements, estimate the polytropic index to be close to or
slightly smaller than 5/3. There are some numerical-analytic
studies of the polytropic stellar or solar wind. 22 analyze
the accretion problem in spherically symmetric geometry and
discuss the property of solutions for polytropic plasma under
stellar gravity and boundary conditions far from the star. 23
and 24 calculate the solar wind solution, assuming a non-self-
consistent radial profile of either density or temperature. Re-
cent study shows that the model of 23 produces good estimate
of solar wind speed compared with the PSP data25. 26 de-
rive the closed form of the polytropic stellar wind equation
but they focus on the solution of the shocked wind. A recent
study by 27 utilizes the complex plane strategy to solve the
equation for polytropic stellar wind.

In this study, we will use a different approach from that
used by 27 to solve the polytropic stellar wind model. The
main point is to combine the integrated momentum equation
(the Bernoulli’s equation) with the polytropic relation and the
mass-conservation equation to derive a single equation for the
critical point. We will discuss how the polytropic index and
the inner boundary temperature modify the wind solution. In
addition, we approximate the effect of the coronal heating at
low altitudes by assuming an isothermal layer at the bottom of
the solar corona28. We also analyze the effect of a pre-defined
force in the momentum equation. The paper is organized as
follows: In Section II, we show the statistical result, using
PSP data from the first nine orbits, of the radial evolution of
the proton temperature and estimate the polytropic index of
the solar wind. In Section III we show the procedure to find
the analytic-numerical solution of the polytropic stellar wind
and do a comprehensive analysis of the characteristics of the
model. In Section IV, we conclude the study.

II. PARKER SOLAR PROBE OBSERVATIONS

We use PSP proton data from the first nine encounters to es-
timate the polytropic index of the solar wind. Level-3 proton
velocity and temperature data from SPAN-Ion (electrostatic
analyzer) and SWEAP (Faraday cup) are used29,30. In FIG.
1, we show proton temperature (Tp) as a function of radial
distance to the Sun. Curves with different colors correspond
to different radial solar wind speed ranges (written in the leg-
end). Here we calculate the average values (squares) and stan-
dard deviations (errorbars) of the data binned in radial dis-
tance r. The black solid line shows Tp ∝ r−4/3, i.e. adiabatic
cooling with γ = 5/3. The black dashed line shows Tp ∝ r−0.5,
i.e. a polytropic wind with γ = 1.25. For all the speed ranges,
Tp roughly follows a power-law decay with r, implying a poly-
tropic relation Tp ∝ r−2(γ−1) assuming the solar wind speed
does not vary much with r. FIG. 1 clearly shows that the
polytropic index depends on the solar wind speed. Slower
stream cools faster, with polytropic index around 5/3, while
faster stream cools slower, with polytropic index around 1.25
or even smaller for speed larger than 450km/s. The observa-
tion indicates that the in-situ heating process, e.g. that from

FIG. 1. Proton temperature (Tp) as a function of radial distance to
the Sun. PSP/SPAN and PSP/SPC data from the first nine encounters
are used. Curves with different colors correspond to different radial
solar wind speeds as indicated in the legend. Squares and errorbars
show the average values and standard deviations of the data binned in
radial distances to the Sun. The black solid line shows Tp ∝ r−4/3, i.e.
adiabatic cooling γ = 5/3. The black dashed line shows Tp ∝ r−0.5,
i.e. a polytropic solar wind with γ = 1.25.

the turbulence cascade, is stronger in the faster solar wind
stream.

III. 1D POLYTROPIC SOLAR WIND MODEL

In this section, we analyze the spherically symmetric 1D
time-stationary solar wind model with purely radial velocity.
In Section III A, we will briefly review the isothermal case1.
In Section III B, we show in details how to determine the poly-
tropic wind solution. Then we discuss the effect of an isother-
mal layer at the coronal base in Section III C and finally we
show the effect of the external force in Section III D.

A. Isothermal solar wind

As an introduction, we briefly review the 1D isothermal so-
lar wind model with adiabatic index γ = 1, which was first
analyzed by 1. Considering a flux tube with cross section area
A(r), the mass flux conservation gives

ρ(r)V (r)A(r) =Const, (1)

where ρ,V are the density and radial solar wind speed. The
momentum equation is

V
dV
dr

=−C2 1
ρ

dρ

dr
− GM

r2 (2)

with C =
√

kBT/mp being the sound speed where kB is the
Boltzmann constant, mp is the proton mass and T is the
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FIG. 2. Solution of the isothermal (solid curves) and polytropic
(γ = 1.09, dashed-dotted curves) solar wind models for different tem-
peratures at the solar surface (r = rs).

proton temperature. In a spherically expanding solar wind
(A(r) = r2), the momentum equation can be re-arranged in
the following form(

V − C2

V

)
dV
dr

=C2 2
r
− GM

r2 (3)

with the mass-conservation relation. The l.h.s. term indicates
that if we require a solution of V (r) that starts from a very
small value at the inner boundary and increases to larger than
the sound speed, the equation has a singular point

rc =
GM
2C2 (4)

at which V (r) = C. We can integrate equation (3) from this
critical (sound) point to any radial location r and get the
Bernoulli’s equation(

V 2

C2 −1
)
− ln

(
V 2

C2

)
=4ln

(
r
rc

)
+4
( rc

r
−1
)

(5)

In FIG. 2, we show the solution of the isothermal wind
model (equation (5)) for different coronal temperatures by
solid curves. We note that there are actually two branches
of solutions that pass through the critical point, but the other
solution has dV/dr < 0, i.e. wind speed decreasing with dis-
tance and passing through the sound speed from above, thus it
is not the solar wind solution.

B. Polytropic solar wind

In this section, we show how to self-consistently find the
transonic solutions, i.e. solutions that pass through the sound
point smoothly, with γ > 1. The polytropic case is more com-
plicated than the isothermal case in that the critical point can-
not be explicitly determined.

The mass-conservation relation gives

ρ(r) = ρ0
A0V0

A(r)V (r)
(6)

where ρ0, V0, and A0 are the density, velocity, and cross sec-
tion area at the inner boundary r0. The polytropic relation
gives Pρ−γ = Const or equivalently T ρ−(γ−1) = Const. The
momentum equation is

V
dV
dr

=− 1
ρ

dP
dr
− GM

r2 + f (r) (7)

where f (r) is the external force per unit mass. In this section,
we set f (r) = 0. Using the polytropic relations, the pressure
gradient term can be written as

− 1
ρ

dP
dr

=− kB

mp

γ

γ−1
dT
dr

(8)

Plug it into equation (7) and integrate from r0 to r, we get

1
2
(V 2−V 2

0 ) =−
γ

γ−1
kB

mp
(T −T0)+GM

(
1
r
− 1

r0

)
(9)

The subscript “0” indicates quantities at the inner boundary
r0. The above equation includes two integral constants: V0
and T0. The temperature T0 should be a given inner boundary
condition but V0 is not a free parameter and should be deter-
mined by the constraint that the solution V (r) passes through
the critical point smoothly. So, let’s revisit the momentum
equation (equation (7)). We can write the pressure gradient
term as

− 1
ρ

dP
dr

=C2
s

1
AV

d(AV )

dr
(10)

where

C2
s =

γkBT
mp

=C2
0

(
A0V0

AV

)γ−1

(11)

is the square of local sound speed and C2
0 = γkBT0/mp is the

square of sound speed at r0. Plug the above relation into equa-
tion (7), we get(

V − C2
s

V

)
dV
dr

=C2
s

1
A

dA
dr
− GM

r2 (12)

One can easily show that for γ = 1 and A= r2, the above equa-
tion reduces to equation (3). Equation (12) implies that the
location of the critical point rc and the velocity at the critical
point Vc satisfy

Vc−
C2

s

Vc
= 0 (13a)

C2
s

(
1
A

dA
dr

)
rc

− GM
r2

c
= 0 (13b)
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FIG. 3. Phase diagram of the number of roots of equation (20). Hor-
izontal axis is polytropic index γ and vertical axis is the parame-
ter a = (C0/Cg)

2 measuring the relative strength of the gravitational
field. Dark red region has two roots, orange region has one root, and
the white region has no root. The yellow line shows a = 2(γ − 1).
The horizontal dashed line marks a = 1 and the vertical dashed line
marks γ = 3/2. The cyan lines show the realistic parameters of the
Sun with r0 = rs and varying inner boundary temperature T0.

or

V 2
c =C2

s =
GM
r2

c
×
(

1
A

dA
dr

)−1

rc

(14)

One more equation is needed to relate V0 that appears in
Cs (equation (11)) with rc and Vc. Writing the Bernoulli’s
equation (equation (9)) at r = rc and using the relation Tc =

T0 (A0V0/AcVc)
γ−1 to substitute Tc, we get

1
2
(V 2

c −V 2
0 ) =−

C2
0

γ−1

[(
V0A0

VcAc

)γ−1

−1

]

+GM
(

1
rc
− 1

r0

) (15)

Equations (13a), (14), and (15) form a closed equation set:

V 2
c =C2

s =C2
0

(
A0V0

AcVc

)γ−1

(16a)

V 2
c =

GM
r2

c
×
(

1
A

dA
dr

)−1

rc

(16b)

1
2
(V 2

c −V 2
0 ) =−

C2
0

γ−1

[(
V0A0

VcAc

)γ−1

−1

]

+GM
(

1
rc
− 1

r0

) (16c)

from which we can solve V0, Vc, and rc simultaneously. Here
we note that this three-equation model can be easily extended

to a multi-temperature fluid, e.g. a wind where the ion and
electron have different temperatures and polytropic indices28.
The only modifications are the definition of the sound speed
and the pressure gradient term in equation (16c) as we need to
sum up the contributions from all species. For simplicity, we
assume a single-fluid solar wind throughout this study.

We consider a radially-expanding solar wind (A(r) = r2).
Then from equation (16b), we get

V 2
c =

GM
2rc

=
C2

g

sc
(17)

where we have defined the normalized radius s = r/r0 and

Cg =

√
GM
2r0

, (18)

which is one half of the escape velocity. We note that r0 does
not necessarily equal to the solar radius rs. As will be dis-
cussed in Section III C, r0 could be the outer radius of the
isothermal layer formed due to large heating or thermal con-
duction in the lower corona28. Plug equation (18) in equation
(16a), we get

V 2
0 =C2

g

(
Cg

C0

) 4
γ−1

s
3γ−5
γ−1

c (19)

With equations (17) and (19), we can eliminate V0 and Vc in
equation (16c) and get a single equation for sc:

1
2

[(
Cg

C0

) 4
γ−1

s
2(2γ−3)

γ−1
c −1

]
+

1
γ−1

(
C2

0
C2

g
sc−1

)
= 2(sc−1)

(20)

This is an algebraic equation, so we can numerically find
all the roots sc(γ,C0/Cg). In Appendix , we describe in de-
tail how to determine the number of roots of equation (20)
with the knowledge of C0/Cg and γ . In FIG. 3 we show the
phase diagram of the number of roots of equation (20) on the
(C0/Cg)

2-γ plane. Dark red region has two roots, orange re-
gion has one root, and the white region has no root. The yel-
low line is (C0/Cg)

2 = 2(γ − 1). We have numerically veri-
fied, by comparing Vc and V0, that if there is one root, only
the decelerating solution exists, i.e. solar wind solution can
only be found in the dark red region, bounded by the two
lines C0/Cg = 1 and (C0/Cg)

2 > 2(γ−1). Naturally, γ < 3/2
must also be satisfied as the two lines cross at γ = 3/2. Early
study23 using asymptotic analysis points out that physically
meaningful solar wind solution exists only with γ < 3/2 and
1 � (C0/Cg)

2 > (γ − 1)/2γ . Our result gives a more pre-
cise constraint on (C0/Cg)

2. The cyan lines in FIG. 3 mark
the realistic parameters of the Sun with r0 = rs and varying
temperature at the inner boundary T0. One can read that for
T0 = 2MK solar wind does not exist for γ & 1.1, and even for a
very hot corona with T0 = 5MK, the solar wind does not exist
for γ & 1.3.

Figure 4 shows sc as a function of T0 with fixed γ (panel
(a)) and sc as a function of γ with fixed T0 (panel (b)). In this
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FIG. 4. (a) Location of the sound point rc/r0 (r0 = rs) as a function
of the inner boundary temperature T0. Blue curves are the accelerat-
ing (wind) solution and orange curves are the decelerating solution.
Solid curves are γ = 1.09 and dashed-dotted curves are γ = 1.05.
Black curve is the isothermal case. (b) Location of the sound point
as a function of the polytropic index γ with fixed inner boundary tem-
perature. Solid curves are T0 = 2MK, dotted curves are T0 = 3MK,
and dashed-dotted curves are T0 = 5MK. Red dots mark the isother-
mal cases.

plot, we have set r0 = rs. Blue curves show the accelerating
(solar wind) solution and orange curves show the decelerat-
ing solution. The black curve in panel (a) and the red dots in
panel (b) correspond to an isothermal plasma (γ = 1). Differ-
ent from the isothermal case where the accelerating and decel-
erating solutions pass through the same critical point, the two
branches of solutions with γ > 1 have different critical radii
because the temperature depends on the wind speed profile.
As T0 decreases and γ increases, the critical radii for both the
two branches of solutions increase, and rc of the accelerating
solution increases much faster than that of the decelerating
solution. Consistent with FIG. 3, one can read from panel (b)
of FIG. 4 that rc for the accelerating solution diverges to ex-
tremely large values (actually infinity) as γ approaches certain
critical values, corresponding to the cross points between the
cyan and yellow lines in FIG. 3.

After sc is solved, we can easily calculate Vc from equation
(16b) and then integrate the momentum equation from rc:

1
2
(V 2−V 2

c ) =−
V 2

c

γ−1

[(
Vcs2

c

V s2

)γ−1

−1

]

+2C2
g

(
1
s
− 1

sc

) (21)

to acquire the profile of V (r). We note that, the above equation
gives two branches of V (r) starting from one critical point,
but only one branch satisfies the given inner boundary condi-
tion. This is similar to the early work on polytropic accretion
flow22, which shows that there are two branches of solutions
that cross the critical point but only one of them satisfies the
boundary condition at infinity. In Figure 2, we plot V (r) for
γ = 1.09 and varying T0 in dashed-dotted curves. Compared
with the isothermal case, the solar wind speed drops signifi-
cantly even though γ is only slightly larger than 1. In Figure
5, we show the profiles of the solved solar wind speed (top)
and the corresponding temperature (bottom) for a fixed inner
boundary temperature T0 = 3MK and different values of γ .
We see that the wind speed decreases very rapidly with the
increasing γ .

In conclusion, results from this section show that a simple
polytropic wind model cannot explain the observed solar wind
speed with the polytropic index deduced from in-situ data as
shown in Section II. In the following two sections, we will
discuss two mechanisms that possibly contribute to solve the
problem.

C. Isothermal layer

In the lower corona, heating mechanisms such as magnetic
reconnection and high thermal conduction may prevent the
plasma temperature from decaying much. Hence, one way to
overcome the difficulty that solar wind solution does not exist
with large polytropic index is to assume there is an isother-
mal zone28 with radius riso > rs such that T (r ≤ riso) ≡ T0.
In the recent study by 28, this “iso-poly” solar wind model
is solved numerically with quite thick isothermal layers such
that the critical point always falls inside the isothermal layer.
In this section, we discuss the model in more details and ana-
lyze the case when the critical point is outside the isothermal
layer. Especially, we point out that, due to the discontinuity in
γ at the interface between the isothermal and polytropic lay-
ers, the iso-poly model cannot produce a solar wind solution
with intermediate values of riso.

For the polytropic layer, if the critical point is still inside
the layer (rc > riso), the procedure described in the prior sec-
tion to solve equation (16) remains exactly the same. We only
need to set the inner boundary at r0 = riso and re-define Cg
using equation (18). In FIG. 6, we show the phase diagram
of the solutions to equation (16) on the r0/rs− γ plane, with
a base temperature T0 = 3MK. The plot is similar to FIG. 3
but here the number of solutions is determined by numerically
searching roots of equation (20) in the range r ∈ [1,20000]r0
instead of using the method described in Appendix . Thus it
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FIG. 5. Solar wind solution for T0 = 3MK and varying γ . Top panel
shows the wind speed and bottom panel shows the temperature.

also serves as a verification of the method in Appendix. In this
plot, the yellow curve marks C0/Cg = 1 and the cyan curve
marks (C0/Cg)

2 = 2(γ−1). The horizontal dashed line marks
the critical radius for the isothermal wind rc,iso. Note that the
yellow curve intersects with the horizontal line at γ = 1 (equa-
tion (4)).

If (riso,γ) falls in the red region, i.e. the critical point is in
the polytropic layer, we can first calculate the solar wind so-
lution in the polytropic layer following the procedure in Sec-
tion III B. We will also acquire the solar wind speed at the
inner boundary riso. As the wind speed must be continuous,
V (riso) serves as the upper boundary condition for the isother-
mal layer. Thus, we can then integrate the isothermal momen-
tum equation back from riso to rs. In panel (a) of FIG. 7, we
show profiles of solar wind speed for T0 = 3MK, γ = 1.1 and
varying radius of the isothermal layer r0 (riso). Black curve is
r0 = rs, i.e. no isothermal layer, and green curve is r0 = 2rs,
a case that the critical point falls in the polytropic layer. The
circles mark the locations of r0. One can see that raising the
height of the isothermal layer indeed increases the solar wind
speed. Besides, FIG. 6 shows that changing riso also changes
the range of γ in which a solar wind solution can be found,
though the maximum γ value allowed is always 3/2.

FIG. 6. Phase diagram of the solutions to equation (16) on the
r0/rs− γ plane, with a base temperature T0 = 3MK. Here the num-
bers of solutions are determined by numerically searching roots
of equation (20) in the range r ∈ [1,20000]r0. The dark red re-
gion has both accelerating and decelerating solutions, the orange re-
gion has only decelerating solution, and other regions have no solu-
tion. The yellow curve marks C0/Cg = 1 and the cyan curve marks
(C0/Cg)

2 = 2(γ − 1). The horizontal dashed line marks the critical
radius for the isothermal wind rc,iso.

If we set riso > rc,iso (the green region in FIG. 6), the criti-
cal point falls inside the isothermal layer such that rc = rc,iso.
In this case, we can first determine the solution in the isother-
mal layer, which is simply the classic Parker’s model (Section
III A). The solution then gives V (riso), which serves as the in-
ner boundary condition for the polytropic layer. In panel (a)
of FIG. 7, the orange dashed curve is r0 = 5.78rs = 1.5rc,iso.
We get a higher wind speed than r0 = 2rs and r0 = rs. How-
ever, one problem immediately appears: The gradient of V (r)
is not continuous at r0, and it is NOT ensured that the wind
speed continues to increase beyond r0. For instance, let us
consider the following scenario: r0 is only slightly larger
than (or equal to) rc,iso so that the isothermal layer gives
V (r0) &

√
kBT/mp. However, for the polytropic solar wind,

we have C0 =
√

γkBT/mp >
√

kBT/mp, which may lead to
V (r0)<C0. That is to say, the supersonic solar wind suddenly
becomes subsonic across r = r0. Meanwhile, since there is no
transonic solution in the polytropic layer (there is no overlap
between the green and red regions in FIG. 6), it means the
flow cannot become supersonic again and we will get either a
blow-up solution with dV/dr→∞ at some point or a “breeze”
with V (r→+∞)→ 0. The blue curve in the panel (a) of FIG.
7 shows the solution with r0 = 3.85rs = rc,iso. We see that,
beyond r0, the accelerating solar wind suddenly becomes de-
celerating and the wind speed tends to zero at large r.

Another problem of this iso-poly model appears when we
consider the parameter space between the yellow (C0/Cg = 1)
curve and the rc,iso line in FIG. 6. Within this parameter space,
the isothermal layer is thinner than rc,iso so that the solar wind
cannot be accelerated to a supersonic speed below riso. How-
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FIG. 7. (a) Profiles of solar wind speed for T0 = 3MK, γ = 1.1 and
varying radius of the isothermal layer r0 (riso). Black curve is r0 = rs,
i.e. no isothermal layer. Green curve is r0 = 2rs. Blue curve is
r0 = 3.85rs = rc,iso where rc,iso is the critical radius in isothermal
case. Orange dashed curve is r0 = 5.78rs = 1.5rc,iso. The circles
mark the locations of r0. Embedded plot is a blow-up of the dotted
rectangle. The dashed vertical line marks rc,iso = 3.85rs. (b) Profiles
of solar wind speed for T0 = 3MK, r0 = 5.78rs and varying γ . Dark
to light colors correspond to γ from 1 to 5/3. Embedded plot is a
blow-up of the dotted rectangle. Red circle marks r0 and red square
marks rc,iso.

ever, the polytropic layer does not have an accelerating solu-
tion that passes through the sound point, either. Thus, within
this parameter regime, we cannot find a supersonic solar wind
solution.

In conclusion, the iso-poly model only works for either
small riso, when the critical point is inside the polytropic layer,
or large riso, when the critical point is well inside the isother-
mal layer and the flow is already supersonic when it enters the
polytropic layer. In panel (b) of FIG. 7, we plot the profiles of
wind speed for T0 = 3MK, r0 = 5.78rs = 1.5rc,iso and differ-
ent values of γ . The black curve is isothermal case and from
dark to light colors correspond to increasing γ . The red cir-
cle marks riso and the red square marks rc(=rc,iso). Below riso,
the solutions are exactly the same for different γ , because it is

within the isothermal layer and the solar wind passes through
the sound point. Slightly above riso, larger γ leads to a larger
acceleration, but asymptotically larger γ gives smaller wind
speed. We note that, in this case, γ can be larger than 3/2.

D. External force

In this section, we discuss the influence of the external force
on the polytropic wind model. In the solar wind, Alfvén wave
pressure gradient may provide such force as the amplitude
of the wave magnetic field can be comparable to the mean
magnetic field31–33. Rigorously, we need to model the ampli-
tudes of outward and inward propagating Alfvén waves with
two additional equations13–16. But these new equations will
greatly complicate the system as they introduce a new critical
point, the Alfvén point9,34. Thus, in this section we assume
the force f (r) is a known function of r, so that the problem
can be solved semi-analytically like we did in previous sec-
tions. The expression of f (r) is

f (r) = f0
1+β (s−1)

s3 exp
[

α

(
1− 1

s

)]
(22)

where α and β are two constants, s = r/r0 and f (r0) = f0.
Asymptotically, there is

f (r→+∞)→ f0×
βeα

s2 , (23)

i.e., the external force decays as r−2, consistent with
a Wentzel-Kramers-Brillouin (WKB) decay of the Alfvén
wave35–37. The integral of f (r) can also be written analyti-
cally:∫

f (r′)dr′ = f0r0
αβ (s−1)+(1−β )s+α

α2s

× exp
[

α

(
1− 1

s

)]
+Const

(24)

We use one dimensionless parameter F to measure the
strength of f0 such that f0 = F × (GM/r2

0). In this study, we
fix α = 3, β = 8, such that f (r) peaks at r = 2.22r0, and we
set r0 = rs. The radial profile f (r) is plotted in panel (a) of
FIG. 8, where the curves with different colors correspond to
different values of F and the black dashed line is the gravity
force.

We start from the isothermal case (γ = 1). With the exter-
nal force, the critical point at which V = C =

√
kBT/mp, is

determined by(
GM
r2

c
− f (rc)

)(
1
A

dA
dr

)−1

rc

=C2 (25)

Obviously, adding an external force below the original sound
point, i.e., the sound point without external force, does not
change the location of the sound point nor the profiles of V (r)
beyond the sound point. After numerically solving the criti-
cal point from equation (25), we can integrate the momentum
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FIG. 8. (a) Radial profile of the external force f (r) (equation (22))
with α = 3, β = 8, and f0 = F × (GM/r2

0). The black dashed line
is the gravity force as a reference. (b) Radial profile of solar wind
speed V (r) with different external force strengths and T0 = 3MK.
Solid curves are isothermal case and dashed curves are γ = 1.1. (c)
Radial profile of solar wind speed V (r) with T0 = 3MK, F = 0.05,
and different γ .

equation from the critical point, which gives

1
2
(
V 2−C2)=C2 ln

(
VA
CAc

)
+GM

(
1
r
− 1

rc

)
+
∫ r

rc

f (r′)dr′
(26)

to recover the profile of V (r). We assume a spherical expan-
sion such that A(r) = r2. In panel (b) of FIG. 8, solid curves
show the solar wind speed V (r) with T = 3MK and different
F . It is clear that a stronger external force lowers the critical
point and increases the solar wind speed significantly.

In the polytropic case, the closed equation set with non-zero
f (r) is similar to equation (16):

V 2
c =C2

s =C2
0

(
A0V0

AcVc

)γ−1

(27a)

V 2
c =

(
GM
r2

c
− f (rc)

)
×
(

1
A

dA
dr

)−1

rc

(27b)

1
2
(V 2

c −V 2
0 ) =−

C2
0

γ−1

[(
V0A0

VcAc

)γ−1

−1

]

+GM
(

1
rc
− 1

r0

)
+
∫ rc

r0

f (r′)dr′
(27c)

From equation (27b), we get

V 2
c =

C2
g

s′c
(28)

where we have defined a “modified critical radius” s′c for con-
venience such that

1
s′c

=
1
sc
− rc f (rc)

2C2
g

(29)

Plug it into equation (27a), we get

V 2
0 =C2

g

(
Cg

C0

) 4
γ−1
× s4

c

(
1
s′c

) γ+1
γ−1

(30)

Then, plug Vc and V0 into equation (27c), we acquire the equa-
tion for sc:

1
2

 1
s′c
−
(

Cg

C0

) 4
γ−1

s4
c

(
1
s′c

) γ+1
γ−1

+ 1
γ−1

(
1
s′c
−

C2
0

C2
g

)

= 2
(

1
sc
−1
)
+

1
C2

g

∫ rc

r0

f (r′)dr′

(31)

which is solved numerically. Finally, we integrate the mon-
tum equation from the critical point and get the profile V (r).
In panel (b) of FIG. 8, the dashed curves show V (r) with
T0 = 3MK, γ = 1.10 and varying F . Similar to the isothermal
case, the external force increases the wind speed significantly.
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In addition, the external force weakens the constraint on the
polytropic index γ . We have verified that a higher F results
in a larger range of γ in which a solar wind solution can be
found. For instance, with T0 = 3MK, the solar wind solution
is only possible for γ . 1.15 (FIG. 3) without the external
force. However, with F & 0.04, γ can be larger than 3/2, and
with F & 0.05, γ can take any value between 1 and 5/3. In
panel (c), of FIG. 8, we plot V (r) with T0 = 3MK, F = 0.05
and γ varying from 1.0 to 5/3. Even with γ = 5/3, the solar
wind is still accelerated to over 600 km/s.

IV. CONCLUSION

In this study, we make use of PSP data from the first nine
encounters to estimate the polytropic index of the solar wind
proton. The radial profiles of the proton temperature indicate
that the polytropic index is highly dependent on the solar wind
speed. Faster solar wind in general has smaller polytropic
index than the slower solar wind. Solar wind stream faster
than 400 km/s may have a polytropic index around 1.25 while
the stream slower than 300 km/s may have a polytropic index
around 5/3 (FIG. 1).

We then carry out a comprehensive analytic-numerical
study of the 1D polytropic solar wind model. The major re-
sults of this part are summarized below:

1. For a generic star with Cg(=
√

GM/2r0),
C0(=

√
γkBT0/mp), and polytropic index γ , the ac-

celerating transonic stellar wind solution only exists
in the parameter space bounded by C0/Cg < 1 and
(C0/Cg)

2 > 2(γ−1). Naturally, there is a constraint in
γ such that 1≤ γ < 3/2.

2. For the Sun, with realistic surface temperature T0 = 1∼
3 MK, no solar wind solution exists with the polytropic
index γ & 1.25 which is deduced from in-situ measure-
ments.

3. An isothermal layer, in which the temperature remains
constant, may help generate a solar wind with large γ .
But the layer must be thicker than the critical radius of
the isothermal solar wind to give a continuously ac-
celerating solar wind. Whether there is such a thick
isothermal layer is a question and needs future study
using remote-sensing data.

4. The external force, e.g. the Alfvén wave pressure gra-
dient, may also contribute to overcome the constraint in
γ .

These results indicate that both the lower coronal heating by
thermal conduction or processes like magnetic reconnection,
and the in-situ dynamics such as the Alfvén waves can be very
important in generation of the observed polytropic solar wind.
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Appendix: Existence of transonic solutions

1. Number of roots

In this appendix, we analyze equation (20) in details and ex-
plain the method to determine whether the equation has roots
and how many roots exist with given parameters. For con-
venience, let us define x = 1/sc, a = (C0/Cg)

2, and b(γ) =
(5−3γ)/(γ−1) so that equation (20) can be reformed into

E(x) = a−
2

γ−1 · xb−b · x+
(

2a
γ−1

−4
)
= 0. (A.1)

We aim to find the solutions in the range x ∈ (0,1] with free
parameters a ∈ (0,+∞) and γ ∈ (1,5/3], which means b ∈
[0,+∞). Especially, b(3/2) = 1 and b(5/3) = 0.

First, we can write down

E(0) =
2a

γ−1
−4, E(1) = a−

2
γ−1 +

2a− γ−1
γ−1

(A.2)

By taking the derivative of E(x):

E ′(x) = b
(

a−
2

γ−1 xb−1−1
)
, (A.3)

we see that there is only one extremum (E ′(xe) = 0) within

x ∈ (0,+∞), at xe = a
1

3−2γ , and

E(xe) =
2(2γ−3)

γ−1
a

1
3−2γ +

2a
γ−1

−4 (A.4)

Thus, given the values of a and γ , the number of roots can be
determined with the following process:

1. Calculate E(0), E(1), xe, and E(xe)

2. If E(0)E(1)< 0, there is only one root. If E(0)E(1)>
0, go to the next step.

3. If xe ≥ 1, there is no root. If 0 < xe < 1, go to the next
step.

https://cdaweb.gsfc.nasa.gov/pub/data/psp/
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4. If E(0)E(xe) > 0, there is no root. If E(0)E(xe) < 0,
there are two roots. If E(xe) = 0, there is one root.

To complete the analysis, we need to discuss the case
E(0)E(1) = 0. If E(0) = 0, we get a = 2(γ − 1) and thus
E(1) = [2(γ−1)]−2/(γ−1)− b. One can show that E(1) ≥ 0
for γ ∈ (1,5/3] with the zero point at γ = 3/2, which is a spe-
cial condition and will be discussed later. Here let us ignore
the γ = 3/2 case and write E(1)> 0. xe = [2(γ−1)]1/(3−2γ),
which is always smaller than 1 with γ ∈ (1,5/3]. E(xe) is neg-
ative for 1 < γ < 3/2 and positive for γ > 3/2. Thus, along
the line a = 2(γ − 1), there is one root for 1 < γ < 3/2 and
no root for 3/2 < γ < 5/3. If E(1) = 0, one can show that
a = 1 is the only possibility for any γ value. Then we have
xe = 1. Thus, no matter whether E(0) is negative or positive
(separated by γ = 3/2), there is only one root along the a = 1
line, which is x = 1 such that the flow starts with sound speed
at the inner boundary.

One special case is γ = 3/2 (b = 1) when E(x) is a linear
function of x. In this case, one can show that E(0)E(1) =
4(a− 1)2

[
4− (a+1)(a2 +1)/a4

]
. For a < 1, E(0)E(1) < 0

and there is one root. For a > 1, E(0)E(1) > 0 and there is
no root. For a = 1, we get E(x)≡ 0, i.e. any x is allowed. By
observing the integrated momentum equation (equation (9)),
we find that with γ = 3/2 and a = 1, V (r) ≡ V0 is an exact
solution. That is to say, the flow can start from any initial
value and remains a constant speed. That is why any critical
point is allowed.

Another case is γ = 5/3 (b = 0) and all terms containing x
vanish in equation (A.1), leading to the equation

a−3 +3a = 4 (A.5)

The equation is not satisfied in general unless a = 1, when x
can be of any value. Actually, one can show that with γ = 5/3
and a = 1, V (r) = C0s−1/2 is a solution, and the wind speed
equals to the sound speed (V (r) = Cs(r)) at any location r.
Hence, for adiabatic plasma, there is no transonic solution at
all.

The phase diagram of the number of transonic solutions on
the a− γ plane is shown in FIG. 3.

2. Property of the solutions

We note that, so far we only determined the number of
roots. For each root, whether the solution V (r) is accelerat-
ing or decelerating with r needs further analysis. The simplest
way is to calculate V0 (equation (19)) and Vc (equation (14))
after solving rc and compare the two values. If Vc > V0 the
flow is accelerating and vice versa. We do not find a straight-
forward way to make such comparison analytically (see next
paragraph for a weak proof with both a < 2(γ−1) and a < 1
satisfied), thus we numerically calculate these values. We
have verified that if there is only one root of rc, only the de-
celerating solution (Vc <V0) exists, and if there are two roots
of rc, one of the root corresponds to Vc <V0 and the other one
corresponds to Vc > V0. That is to say, the accelerating solu-

tion (Vc >V0) only exists in the dark red region shown in FIG.
3 that is bounded by a < 1 and a > 2(γ−1).

In this paragraph, we provide a proof that if a < 2(γ − 1)
and a < 1 are both satisfied, i.e. the orange region in FIG.
3 except for the triangle above a = 1, the solution must have
Vc <V0. We can write equations (19) and (14) as (V0/C0)

2 =

a−(γ+1)/(γ−1)xb
c and (Vc/C0)

2 = xc/a where xc = 1/sc. Thus,

V 2
c

V 2
0
=

xc

a−2/(γ−1)xb
c
=

xc

bxc +4− 2a
γ−1

(A.6)

where equation (A.1) is used to eliminate xb. Consider a <
2(γ − 1), i.e. the orange region in FIG. 3, such that the de-
nominator is always positive (note that b > 0 and xc > 0). If
we assume V 2

c /V 2
0 > 1, we get

(1−b)xc > 4− 2a
γ−1

(A.7)

For 1 < γ < 3/2, 1−b < 0, but xc > 0 and 4−2a/(γ−1) >
0, so the above inequality cannot be satisfied. Thus, in FIG.
3, the orange region on the left of γ = 3/2 can only have a
decelerating solution. For γ > 3/2, 1−b > 0 and thus we get

xc > 1+
1−a
2γ−3

(A.8)

Obviously, for a < 1, the above inequality means xc > 1,
which is out of the domain (0 < x≤ 1). Thus, we have proven
that the orange region on the right of γ = 3/2 and below a = 1
can only have a decelerating solution. We note that no ana-
lytic proof for the triangle bounded by a < 2(γ−1) and a > 1
is found but we have numerically verified that in this region
Vc <V0 is still valid.

An interesting point is that, below a = 1 line, the decelerat-
ing solution starts at r0 with supersonic speed, i.e. V0/C0 > 1
and crosses the sound point from above. However, above
a = 1 line (and below a = 2(γ − 1)), the decelerating solu-
tion starts with subsonic speed, i.e. V0/C0 < 1, and crosses
the sound point from below. That is to say, both Cs(r) and
V (r) are decreasing but Cs(r) decreases faster than V (r) so
that they cross at the sound point. It means that, although
V (r) is a decreasing function, the flow transits from subsonic
to supersonic as it propagates away from the star.
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